Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 478: 153280, 2022 08.
Article in English | MEDLINE | ID: mdl-35973603

ABSTRACT

Titanium dioxide food grade (E171) is one of the most used food additives containing nanoparticles. Recently, the European Food Safety Authority indicated that E171 could no longer be considered safe as a food additive due to the possibility of it being genotoxic and there is evidence that E171 administration exacerbates colon tumor formation in murine models. However, less is known about the effects of E171 accumulation once the exposure stopped, then we hypothesized that toxic effects could be detected even after E171 removal. Therefore, we investigated the effects of E171 exposure after being removed from colon cell cultures. Human colon cancer cell line (HCT116) was exposed to 0, 1, 10 and 50 µg/cm2 of E171. Our results showed that in the absence of cytotoxicity, E171 was accumulated in the cells after 24 of exposure, increasing granularity and reactive oxygen species, inducing alterations in the molecular pattern of nucleic acids and lipids, and causing nuclei enlargement, DNA damage and tubulin depolymerization. After the removal of E171, colon cells were cultured for 48 h more hours to analyze the ability to restore the previously detected alterations. As we hypothesized, the removal of E171 was unable to revert the alterations found after 24 h of exposure in colon cells. In conclusion, exposure to E171 causes alterations that cannot be reverted after 48 h if E171 is removed from colon cells.


Subject(s)
Nanoparticles , Titanium , Animals , Colon , Food Additives/toxicity , Humans , Mice , Nanoparticles/toxicity , Titanium/toxicity
2.
Chem Biol Interact ; 347: 109596, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34329616

ABSTRACT

BACKGROUND: Inhaled nanoparticles (NPs) challenges mobile and immobile barriers in the respiratory tract, which can be represented by type II pneumocytes (immobile) and monocytes (mobile) but what is more important for biological effects, the cell linage, or the type of nanoparticle? Here, we addressed these questions and we demonstrated that the type of NPs exerts a higher influence on biological effects, but cell linages also respond differently against similar type of NPs. DESIGN: Type II pneumocytes and monocytes were exposed to tin dioxide (SnO2) NPs and titanium dioxide (TiO2) NPs (1, 10 and 50 µg/cm2) for 24 h and cell viability, ultrastructure, cell granularity, molecular spectra of lipids, proteins and nucleic acids and cytoskeleton architecture were evaluated. RESULTS: SnO2 NPs and TiO2 NPs are metal oxides with similar physicochemical properties. However, in the absence of cytotoxicity, SnO2 NPs uptake was low in monocytes and higher in type II pneumocytes, while TiO2 NPs were highly internalized by both types of cells. Monocytes exposed to both types of NPs displayed higher number of alterations in the molecular patterns of proteins and nuclei acids analyzed by Fourier-transform infrared spectroscopy (FTIR) than type II pneumocytes. In addition, cells exposed to TiO2 NPs showed more displacements in FTIR spectra of biomolecules than cells exposed to SnO2 NPs. Regarding cell architecture, microtubules were stable in type II pneumocytes exposed to both types of NPs but actin filaments displayed a higher number of alterations in type II pneumocytes and monocytes exposed to SnO2 NPs and TiO2 NPs. NPs exposure induced the formation of large vacuoles only in monocytes, which were not seen in type II pneumocytes. CONCLUSIONS: Most of the cellular effects are influenced by the NPs exposure rather than by the cell type. However, mobile, and immobile barriers in the respiratory tract displayed differential response against SnO2 NPs and TiO2 NPs in absence of cytotoxicity, in which monocytes were more susceptible than type II pneumocytes to NPs exposure.


Subject(s)
Alveolar Epithelial Cells/drug effects , Metal Nanoparticles/toxicity , Monocytes/drug effects , Actin Cytoskeleton/metabolism , Alveolar Epithelial Cells/chemistry , Alveolar Epithelial Cells/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Metal Nanoparticles/chemistry , Monocytes/chemistry , Monocytes/metabolism , Spectroscopy, Fourier Transform Infrared , Tin Compounds/chemistry , Tin Compounds/pharmacology , Tin Compounds/toxicity , Titanium/chemistry , Titanium/pharmacology , Titanium/toxicity , Vacuoles/metabolism
3.
Chem Biol Interact ; 323: 109063, 2020 May 25.
Article in English | MEDLINE | ID: mdl-32224134

ABSTRACT

Exposure to TiO2 NPs induces several cellular alterations after NPs uptake including disruption of cytoskeleton that is crucial for lung physiology but is not considered as a footprint of cell damage. We aimed to investigate cytoskeleton disturbances and the impact on cell migration induced by an acute TiO2 NPs exposure (24 h) and the recovery capability after 6 days of NPs-free treatment, which allowed investigating if cytoskeleton damage was reversible. Exposure to TiO2 NPs (10 µg/cm2) for 24 h induced a decrease 20.2% and 25.1% in tubulin and actin polymerization. Exposure to TiO2 NPs (10 µg/cm2) for 24 h followed by 6 days of NPs-free had a decrease of 26.6% and 21.3% in tubulin and actin polymerization, respectively. The sustained exposure for 7 days to 1 µg/cm2 and 10 µg/cm2 induced a decrease of 22.4% and 30.7% of tubulin polymerization respectively, and 28.7% and 46.2% in actin polymerization. In addition, 24 h followed 6 days of NPs-free exposure of TiO2 NPs (1 µg/cm2 and 10 µg/cm2) decreased cell migration 40.7% and 59.2%, respectively. Cells exposed (10 µg/cm2) for 7 days had a decrease of 65.5% in cell migration. Ki67, protein surfactant B (SFTPB) and matrix metalloprotease 2 (MMP2) were analyzed as genes related to lung epithelial function. The results showed a 20% of Ki67 upregulation in cells exposed for 24 h to 10 µg/cm2 TiO2 NPs while a downregulation of 20% and 25.8% in cells exposed to 1 µg/cm2 and 10 µg/cm2 for 24 h followed by 6 days of NPs-free exposure. Exposure to 1 µg/cm2 and 10 µg/cm2 for 24 h and 7 days upregulates SFTPB expression in 53% and 59% respectively, MMP2 expression remain unchanged. In conclusion, exposure of TiO2 NPs affected cytoskeleton of lung epithelial cells irreversibly but this damage was not cumulative.


Subject(s)
Cytoskeleton/pathology , Epithelial Cells/pathology , Lung/pathology , Nanoparticles/toxicity , Titanium/toxicity , A549 Cells , Actins/metabolism , Cell Movement/drug effects , Cell Size , Cell Survival/drug effects , Cytoskeleton/drug effects , Endocytosis , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Gene Expression Regulation/drug effects , Humans , Ki-67 Antigen/metabolism , Matrix Metalloproteinase 2/metabolism , Nanoparticles/ultrastructure , Polymerization , Protein Precursors/metabolism , Pulmonary Surfactant-Associated Proteins/metabolism , Tubulin/metabolism
4.
Toxicol Lett ; 322: 111-119, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31981686

ABSTRACT

The increasing concern of possible adverse effects on human health derived from occupational engineered nanomaterials (ENMs) exposure is an issue addressed by entities related to provide guidelines and/or protocols for ENMs regulation. Here we analysed 17 entities from America, Europe and Asia, and some of these entities provide limits of exposure extrapolated from the non-nanosized counterparts of ENMs. The international landscape shows that recommendations are mostly made for metal oxide based ENMs and tonnage is one of the main criteria for ENMs registration, however, sub-nanometric ENMs are emerging and perhaps a novel category of ENMs will appear soon. We identify that besides the lack of epidemiological evidence of ENMs toxicity in humans and difficulties in analysing the toxicological data derived from experimental models, the lack of information on airborne concentrations of ENMs in occupational settings is an important limitation to improve the experimental designs. The development of regulations related to ENMs exposure would lead to provide safer work places for ENMs production without delaying the nanotechnology progress but will also help to protect the environment by taking opportune and correct measures for nanowaste, considering that this could be a great environmental problem in the coming future.


Subject(s)
Nanostructures/adverse effects , Occupational Exposure/adverse effects , Occupational Health , Animals , Dose-Response Relationship, Drug , Guidelines as Topic , Humans , No-Observed-Adverse-Effect Level , Occupational Exposure/legislation & jurisprudence , Occupational Exposure/prevention & control , Occupational Exposure/standards , Occupational Health/legislation & jurisprudence , Occupational Health/standards , Policy Making , Risk Assessment , Risk Factors , Threshold Limit Values
SELECTION OF CITATIONS
SEARCH DETAIL
...